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Abstract

Membrane bioenergetics are universal, yet the phospholipid membranes of archaea and bacteria—the deepest branches in
the tree of life—are fundamentally different. This deep divergence in membrane chemistry is reflected in other stark
differences between the two domains, including ion pumping and DNA replication. We resolve this paradox by considering
the energy requirements of the last universal common ancestor (LUCA). We develop a mathematical model based on the
premise that LUCA depended on natural proton gradients. Our analysis shows that such gradients can power carbon and
energy metabolism, but only in leaky cells with a proton permeability equivalent to fatty acid vesicles. Membranes with
lower permeability (equivalent to modern phospholipids) collapse free-energy availability, precluding exploitation of natural
gradients. Pumping protons across leaky membranes offers no advantage, even when permeability is decreased 1,000-fold.
We hypothesize that a sodium-proton antiporter (SPAP) provided the first step towards modern membranes. SPAP increases
the free energy available from natural proton gradients by ,60%, enabling survival in 50-fold lower gradients, thereby
facilitating ecological spread and divergence. Critically, SPAP also provides a steadily amplifying advantage to proton
pumping as membrane permeability falls, for the first time favoring the evolution of ion-tight phospholipid membranes.
The phospholipids of archaea and bacteria incorporate different stereoisomers of glycerol phosphate. We conclude that the
enzymes involved took these alternatives by chance in independent populations that had already evolved distinct ion
pumps. Our model offers a quantitatively robust explanation for why membrane bioenergetics are universal, yet ion pumps
and phospholipid membranes arose later and independently in separate populations. Our findings elucidate the paradox
that archaea and bacteria share DNA transcription, ribosomal translation, and ATP synthase, yet differ in equally
fundamental traits that depend on the membrane, including DNA replication.
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Introduction

Reconstructing the traits of the last universal common ancestor

(LUCA) requires constraining the relationships between the three

domains of life, the archaea, bacteria, and eukaryotes. Recent

phylogenetic studies show that eukaryotes are secondarily derived:

they are genomic chimeras, arising from an endosymbiosis

between a bacterium and an archaeal host cell [1–5]. The

divergence between the two primary domains, the archaea and the

bacteria, is now seen as the deepest branch in the tree of life

[1,6–8]. The properties of LUCA are most parsimoniously those

shared by bacteria and archaea. This leads straight to a serious

paradox. Archaea and bacteria share core biochemistry, including

the genetic code, transcription machinery, and ribosomal trans-

lation [9], but differ for unknown reasons in fundamental traits

including cell membrane [10] and cell wall [11], glycolysis [12],

ion pumping [13], and even DNA replication [14].

The differences in membrane lipids may be the key to this major

unsolved problem in biology. Phospholipid side chains are

typically isoprenoids in archaea and fatty acids in bacteria [15].

While this could reflect adaptive evolution [16], archaea and

bacteria also differ in the stereochemistry of the glycerol-phosphate

headgroup [10]. Archaeal lipids have an sn-glycerol-1-phosphate

(G1P) headgroup, while bacteria use the mirror structure sn-

glycerol-3-phosphate (G3P) (Figure 1). There is no persuasive

selective explanation for these opposite stereochemistries

[10,13,17]. The enzymes involved, glycerol-1-phosphate-dehydro-

genase (G1PDH) in archaea and glycerol-3-phosphate-dehydro-

genase (G3PDH) in bacteria, bear no phylogenetic resemblance,

suggesting they arose independently [10]. If so, then LUCA did

not possess a modern membrane—a seemingly improbable

conclusion, given the central importance of membranes to cells

[10,17,18].

Set against this paradoxical difference in membrane composi-

tion is the universality of membrane bioenergetics [19]. Essentially

all cells power ATP synthesis through chemiosmotic coupling, in

which the ATP synthase (ATPase) is powered by electrochemical

differences in H+ or Na+ concentration across membranes [20].

The ATPase is universally conserved [21] and shares the same

deep phylogenetic split as the ribosome, implying that both were
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present in LUCA [22–24]. The deepest branches in the tree of life

are entirely populated by autotrophs [1,6,7,12,25], which also

depend on chemiosmotic coupling to drive carbon metabolism via

proteins such as the energy-converting hydrogenase (Ech) and

ferredoxin [26]. But there are serious objections to the idea that

LUCA was chemiosmotic. Pumping protons across membranes

requires sophisticated proteins, which are only useful in mem-

branes impermeable to protons [27]. Unlike the ATPase, no ion

pumps are universally conserved [13]. The pathways for heme and

quinone synthesis (the major cofactors of respiratory proteins) also

differ in archaea and bacteria, although their distribution is

complicated by lateral gene transfer, as is reconstruction of the

phylogenetic origins of respiratory ion pumps [13]. But it seems

likely that both lipid membranes and active pumping are

evolutionarily distinct in archaea and bacteria [9,11]. It is hard

to reconcile these fundamental differences with the universality of

the ATPase. On the face of it, LUCA was chemiosmotic, yet did

not have a modern phospholipid membrane or active ion pumps.

A possible resolution is that LUCA exploited natural (geochem-

ically sustained) proton gradients [18,28,29]. However, the

hypothesis that natural proton gradients could drive carbon and

energy metabolism in LUCA, in the absence of active ion pumps,

faces a serious drawback. Because fluids are electrically balanced,

the transfer of H+ ions down a concentration gradient, from an

acid solution into a cell, transfers positive charge into the cell,

generating a membrane potential that opposes further influx. The

system swiftly reaches electrochemical (Donnan) equilibrium, in

which electrical charges and concentration differences are offset

[30]. Equilibrium is death: natural proton gradients could only

drive carbon and energy metabolism in LUCA if such equilibrium

is avoided—in effect, if protons accumulating inside a cell can

leave again. Membrane permeability could be critical to main-

taining disequilibrium in any system with continuous flow, as leaky

membranes impose less of a barrier to the continued flux of H+,

OH2, and other ions [19].

The feasibility of this hypothesis depends on the dynamics of ion

fluxes that are unknown. We have therefore built a model to

estimate quantitative differences in free energy (2DG) across lipid

membranes exposed to natural proton gradients. We consider a

cell exposed simultaneously to alkaline fluids and relatively acidic

water (Figure 2). Our model is independent of any particular

setting, but requires continuous laminar flow with limited mixing

(as found in microporous alkaline hydrothermal vents

[18,19,24,31–33] and potentially other environments), allowing

sharp gradients of several pH units to be maintained across short

distances of 1–2 mm. In general, we assume that the external pH

does not change on either side of the cell, as external fluids are

Figure 1. Membrane lipids of archaea and bacteria. Archaeal
lipids (left) are typically composed of isoprenoid chains linked by ether
bonds to an sn-glycerol-1-phosphate (G1P) backbone. The chirality of
the two glycerol backbones is fully conserved within each clade not
only in structure but in their unrelated synthetic enzymes. Although
ether linkages have been observed in bacterial membranes [15] and
isoprenoids are common to all three domains, bacterial lipids (right) are
typically composed of fatty acids in ester linkage to an sn-glycerol-3-
phosphate (G3P) skeleton. Despite widespread horizontal gene transfer,
no bacterium has been observed with the archaeal enantiomer, or vice
versa [10].
doi:10.1371/journal.pbio.1001926.g001

Figure 2. The model. A cell with a semi-permeable membrane sits at
the interface between an alkaline and an acidic fluid. The fluids are
continuously replenished and otherwise separated by an inorganic
barrier. Hydroxide ions (OH2) can flow into the cell from the alkaline
side by simple diffusion across the membrane, with protons (H+)
entering in a similar manner from the acidic side. Other ions (Na+, K+,
Cl2, not shown) diffuse similarly, as a function of their permeability,
charge, and respective internal and external concentrations on each
side. Inside the protocell, H+ and OH2 can neutralize into water, or leave
towards either side. Internal pH thus depends on the water equilibrium
and relative influxes of each ion. A protein capable of exploiting the
natural proton gradient sits on the acidic side, allowing energy
assimilation via ATP production, or carbon assimilation via CO2 fixation.
doi:10.1371/journal.pbio.1001926.g002

Author Summary

The archaea and bacteria are the deepest branches of the
tree of life. The two groups are similar in morphology and
share some fundamental biochemistry, including the
genetic code, but the differences between them are stark,
and rank among the great unsolved problems in biology.
The composition of cell membranes and walls is utterly
different in the two groups, while the mechanism of DNA
replication seems unrelated. We address a specific para-
dox, giving new insight into this deep evolutionary split:
membrane bioenergetics are universal, yet the membranes
themselves are not. We resolve this paradox by consider-
ing the energetics of a hypothetical last universal common
ancestor (LUCA) in geochemically sustained proton gradi-
ents. Using a quantitative model, we show that LUCA
could have used proton gradients to drive carbon and
energy metabolism, but only if the membranes were leaky.
This requirement precluded ion pumping and the early
evolution of phospholipid membranes. We constrain a
pathway leading from LUCA to the deep divergence of
archaea and bacteria on the basis of incremental increases
in free-energy availability. We support our inferences with
comparative biochemistry and phylogenetics, and show
why the late evolution of modern membranes forced
divergence in other traits such as DNA replication.

Membrane Divergence in Archaea and Bacteria
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replenished by continuous flow from large reservoirs (e.g.,

hydrothermal fluids or the ocean), but we do also consider mixing.

Protons enter the cell through membrane proteins, and directly

through the lipid phase of the membrane. The overall rate of

proton influx depends on the difference in proton concentration

and electrical charge (upon proton entry) between the outside and

inside of the cell, the kinetics of the membrane protein (e.g.,

ATPase), the number of membrane proteins (given as a proportion

of the surface area), the proton permeability of the lipid phase of

the membrane, and the rate of loss of protons from inside the cell

(see Materials and Methods). For simplicity, we assume that

gradient-exploiting membrane proteins are only present on the

acid face of the cell. Proton loss from inside the cell therefore

depends on the rate of influx of OH2 from alkaline fluids, which

neutralize protons within the cell, and the rate of loss of protons

across the lipid phase to the alkaline exterior (Figure 2). We also

consider membrane permeability to Na+, K+, and Cl2 ions, which

move charge, and hence influence the electrochemical potential

difference and the rate of proton flux. By calculating the overall

proton flux on the basis of these parameters, we estimate changes

in the steady-state proton concentration inside the cell relative to

the outside, giving the free energy (2DG) available to drive carbon

and energy metabolism. Our findings allow us to propose a new

and tightly constrained bioenergetic route map leading from a

leaky LUCA dependent on natural proton gradients, to the first

archaea and bacteria with highly distinct ion-tight phospholipid

membranes. These bioenergetic considerations give striking

insights into the nature of LUCA, and the deep divergence

between archaea and bacteria.

Results

Free-Energy Availability Depends on Membrane
Permeability

The model shows that cells with 1% ATPase in a proton-tight

membrane with glycerol-phosphate headgroups (giving an H+

permeability ,1025 cm/s, like extant archaea and bacteria [34]),

collapse natural proton gradients within seconds (Figure 3A and

3B). The magnitude of the pH gradient depends on the

environmental setting. To constrain possibilities we considered

pH values commensurate with alkaline hydrothermal vents, but

the same principles apply to any other setting with dynamic pH

gradients across short distances. The early oceans may have been

mildly acidic, as low as pH 5, and alkaline fluids as high as pH 11

[35] but we conservatively set a 3 pH-unit gradient, with the

‘‘acid’’ at pH 7 and alkaline fluids at pH 10. Nonetheless, collapse

of the gradient was evident in proton-tight membranes across a

range of gradients (Figure 3B). Protons enter through the ATPase

faster than they can exit or be neutralized by OH2, so H+ influx

rapidly reaches electrochemical equilibrium. In contrast, leaky

protocells (equivalent to fatty-acid vesicles without glycerol

phosphate headgroups) in a 7:10 pH gradient with 1% ATPase

in the membrane retain nearly all the free energy available, having

a 2DG only ,17% lower than an open system (i.e., a single

membrane containing the same number of membrane proteins,

separating a continuous flux of acid and alkaline fluids; Figure 3A).

This is because proton flux through the ATPase is ,4 orders of

magnitude faster than through the lipid phase, even with a high

proton permeability of 1022 cm/s (based on the kinetics of proton-

flux through the ATPase, see Materials and Methods and Table

S1). Leaky cells in natural proton gradients of 3 pH units therefore

have sufficient free energy to drive ATP synthesis.

Even leaky cells are sensitive to the amount of membrane

protein, with higher proportions of ATPase collapsing the gradient

(Figure 3C). In this case, the rate of H+ entry through ATPase

covering 10%–50% of the membrane surface area is substantially

faster than the rate of clearance of H+ from inside the cell (and

reaction with OH2), collapsing 2DG. However, 1%–5% ATPase

in a leaky membrane (1023 cm/s) retains a 2DG of close to

20 kJ/mol (Figure 3A and 3C). With 3–4 protons translocated per

ATP synthesized (Table S1), this gives a 2DG for ATP hydrolysis

of 60 to 80 kJ/mol, similar to modern cells and sufficient to drive

intermediary biochemistry, including aminoacyl adenylation in

protein synthesis [36]. This assumes the same stoichiometry as the

modern ATPase (3–4 protons per ATP). Because the kinetics of

early enzymes would arguably not have been as honed by

evolution as their modern equivalents, we used 10% of modern

proton flux rates. However, this difference in efficiency actually

has limited impact on the model compared with modern flux rates

(Figure S1); increasing the stoichiometry of the ATPase has a

similarly small effect (Figure S2). We did not estimate rates of ATP

synthesis, as that would require additional assumptions about

concentrations of ATP, ADP, and phosphate, as well as the rates

of ATP consumption and growth; these are almost impossible to

constrain at present.

The same principles apply to carbon metabolism. We consider

whether the membrane protein Ech could drive carbon reduction

by H2 in natural proton gradients. Ech uses the proton-motive

force to drive carbon metabolism in some archaea and bacteria via

the reduction of ferredoxin [26]. As with the ATPase, cells with

1%–5% Ech in the membrane retain most of the free energy

available from a 7:10 pH gradient (Figure 3D). Higher concen-

trations of Ech (10%–50%) collapse 2DG even more than the

ATPase, as the rate of proton flux through Ech is double that of

the ATPase, and its surface area is slightly smaller, so there are

more proton pores per unit surface area (Table S1). Such high

concentrations of Ech or ATPase are in any case improbable, and

not relevant to modern cells, but demonstrate the range of

conditions in which natural gradients can in principle drive carbon

and energy metabolism.

Given a 7:10 pH gradient, it is therefore feasible to have 1%–

5% Ech and 1%–5% ATPase in the membrane, driving both

carbon and energy metabolism in cells with leaky membranes. But

incorporation of either G1P or G3P glycerol-phosphate head-

groups (found in archaea and bacteria respectively), or racemic

mixtures of archaeal and bacterial lipids (which, surprisingly, are

as impermeable to protons as standard membranes [37]), are not

favored because they reduce the proton permeability of the

membrane and so collapse the energetic driving force. Glycerol-

phosphate headgroups in particular decrease proton permeability,

as they prevent fatty acid flip-flop across the membrane (see

Discussion).

Pumping Ions across Leaky Membranes Does Not Give a
Sustained Increase in Free Energy

If leaky cells with low amounts of ATPase and Ech (1%–5%) are

viable in natural proton gradients, but cells with phospholipid

membranes are not, then the evolution of active pumping becomes

a paradox: pumping protons across a proton-permeable mem-

brane does not increase free energy (2DG), because the protons

immediately return through the lipid phase of the membrane.

We demonstrate this using a model of a simple H2-dependent

proton pump (equivalent to Ech operating in reverse, as found in

some simple bacteria and archaea [26]). We find that in a 7:10 pH

gradient 2DG falls as membrane permeability decreases from

1022 to 1026 cm/s (Figure 4A). 2DG here depends on two

factors: active pumping and the natural pH gradient. As

membrane permeability falls, the contribution of the natural

Membrane Divergence in Archaea and Bacteria
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pH gradient also falls, undermining 2DG. In contrast, the benefit

of pumping increases, as fewer protons return through the lipid

phase. The balance between these two factors depends on the

strength of pumping (which equates to the number of pumps, i.e.,

% surface area). However, even when the pump occupies 5% of

the membrane surface area, pumping H+ gives no advantage until

a modern permeability of 1025 cm/s, i.e., there is no benefit to

improving permeability across 1,000-fold (Figure 4A). Thus, there

is no selective pressure to drive either the origin of pumping or the

evolution of modern proton-tight membrane lipids in natural

proton gradients.

Pumping Na+ works better across leaky membranes (Figure 4B),

as lipid membranes are ,6 orders of magnitude less permeable to

Na+ than to H+ (due to fatty acid flip-flop; see Discussion) [34].

However, as with pumping H+, 2DG falls as the membrane

becomes less permeable, because the contribution of the natural

gradient also declines, giving no continuous selective advantage to

pumping Na+. With a proton permeability ,1025 cm/s, there is

no advantage to pumping Na+ at a pump density of 1%–5%

surface area compared with leaky protocells lacking a pump.

Pumping Na+ therefore offers an initial advantage, but there is no

sustained selection pressure for tightening membrane permeability

to modern values.

Neither is there any advantage in the absence of a natural pH

gradient. This would apply to the evolution of chemiosmotic

coupling in any setting that lacks natural gradients. Under this

condition, pumping either H+ (Figure 4C) or Na+ (Figure 4D)

offers a steadily amplifying advantage as membrane permeability

falls. However, without an external pH gradient, 2DG is low, the

rise with reduced permeability is meager, and remains well below

the 15–20 kJ/mol required by modern cells to drive processes like

aminoacyl adenylation for protein synthesis [36]. Cells with

permeable membranes (1022–1024 cm/s) are therefore unlikely to

be viable unless powered by some other means [23,27]. Hence in

either the presence or absence of pH gradients, there is no

sustained selection pressure to drive the evolution of either active

pumping or modern membranes.

Promiscuous H+/Na+ Bioenergetics Facilitates Spread and
Is Prerequisite for Active Pumping

Our model shows that leaky membranes were necessary to

survive in natural proton gradients but that pumping protons

Figure 3. Dynamics of free-energy change (2DG) in cells powered by natural proton gradients. (A) Proton-permeable vesicles ($
1024 cm/s) have only a small loss of free-energy compared with an open system (pH gradient 7:10, 1% ATPase). Reduced membrane permeability (#
1024 cm/s), including permeabilities equivalent to modern membranes (,1025 cm/s), collapse the gradient within seconds. (B) At low permeability
(1026 cm/s), 2DG collapses regardless of gradient size. Within seconds, H+ flux through ATPase equilibrates with the acidic fluids. (C) The collapse of
2DG is more extensive the greater the amount of membrane-bound ATPase, even with a leaky membrane (1023 cm/s). (D) With Ech, the collapse of
the natural gradient is similar to that of the ATPase, showing that natural proton gradients can power energy (ATPase) and carbon (Ech) metabolism,
given 1%–5% enzyme in membrane. Na+ permeability was kept 6 orders of magnitude higher than that of H+ throughout all simulations in this and
all figures of the article. Except in (B), all results were calculated in a pH gradient 7:10.
doi:10.1371/journal.pbio.1001926.g003
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across such leaky membranes is fruitless. Yet free-living cells

require ion-tight membranes and active pumping for bioenerget-

ics. What drove this evolutionary change?

We hypothesize that a necessary first step was adding Na+ as an

additional ‘‘promiscuous’’ coupling ion. A non-electrogenic

sodium-proton (1Na+/1H+) antiporter (SPAP), found widely in

cells, could in principle use a natural H+ gradient to generate a

biochemical Na+ gradient. Exchanging Na+ for H+ does not alter

membrane potential directly, but the difference in lipid perme-

ability of the two ions alters ion flux, with significant effects on

2DG. Because lipid membranes are ,6 orders of magnitude less

permeable to Na+ than to H+ [34], fewer Na+ ions can pass

through the lipid phase of the membrane, so the Na+ gradient does

not dissipate as quickly. As a result, Na+ flux becomes more tightly

funneled through membrane proteins, improving the coupling of

the membrane without changing its chemistry [19]. Because the

H+ gradient is sustained geochemically, SPAP simply adds a Na+

gradient to the natural H+ gradient. Taking advantage of mixed

Na+/H+ gradients requires promiscuity of membrane proteins for

both ions, which is indeed the case for several contemporary

bioenergetic proteins, including the ATPase [38] and Ech [26] (see

Discussion).

SPAP increases proton influx, initially lowering 2DG (Fig-

ure 5A). However, the coupled extrusion of relatively imperme-

able Na+ ions increases 2DG by ,60% within minutes in a 7:10

gradient, saturating when SPAP covers ,5% of the membrane

surface area (Figure 5A). Importantly, the free energy available

from pH gradients declines in more acidic conditions. 2DG is

greatest with a 7:10 gradient, lower at 6:9, and nearly zero with a

5:8 gradient, despite the three-order-of-magnitude correspondence

(Figure 5B). This asymmetry arises because H+ and OH2 flux

through the membrane depends on concentrations as well as

gradient size [39]. Comparatively high acidity and low alkalinity

increases H+ influx but hinders OH2 neutralization, collapsing the

H+ gradient. Because Na+ extrusion through SPAP depends on the

natural H+ gradient, SPAP increases 2DG in relatively alkaline

regions (pH 7–10 and 6–9) but has little effect on 2DG in more

acidic regions (pH 5–8), making acidic regions less favorable for

colonization, even with SPAP. When the rate of H+ influx does not

collapse the proton gradient, SPAP significantly increases 2DG,

allowing survival in shallower pH gradients (Figure 5C). If a

2DG.15 kJ/mol is needed for growth, 5%–10% SPAP allows

cells to grow in 50-fold weaker gradients (e.g., 8.5:10; Figure 5C),

a significant ecological advantage, facilitating spread. This general

principle holds whatever the actual value of 2DG needed for

growth in early cells. The advantage offered by SPAP also applies

to fluctuations in gradient size (e.g., due to mixing of fluids). 2DG

plainly fluctuates with the pH front even in the presence of SPAP;

but SPAP still increases 2DG even with considerable fluctuations

in pH (Figures S3 and S4).

Figure 4. Pumping H+ or Na+ does not offer a sustained selective advantage. (A) Pumping H+ in a membrane with 1% ATPase causes a
sustained loss in 2DG as membrane permeability decreases with 1% pump. Even with 5% pump, 2DG does not change over 3 orders of magnitude,
and pumping only improves 2DG near modern membrane permeability (#1025 cm/s). (B) Pumping less-permeable Na+ is initially better, adding to
the natural gradient, but the early benefit is lost as membranes become tighter, due to the collapse of the natural H+ gradient. In the absence of a
gradient, pumping both H+ (C) and Na+ (D) offers a sustained advantage to tightening up membranes, but given a minimal requirement of around
15–20 kJ/mol to power aminoacyl adenylation, the energy attained is not sufficient to power intermediary biochemistry.
doi:10.1371/journal.pbio.1001926.g004
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Crucially, SPAP is also a necessary preadaptation for the active

pumping of protons, and for decreasing membrane permeability

towards modern values. Whereas pumping H+ in the absence of

SPAP gives no sustained benefit in terms of 2DG, the presence of

SPAP in a leaky membrane allows pumping of H+ to pay

dividends. 2DG now markedly increases with decreasing perme-

ability (Figure 6A), for the first time giving a sustained selective

advantage to higher levels of pumping and tighter membranes. As

in the absence of SPAP, 2DG depends on two factors: the power

of the pump (which varies with the proportion of surface area

covered) and the natural pH gradient. As membrane permeability

falls, the contribution of the natural pH gradient also falls. While

1% pump cannot sustain 2DG when the contribution of the

gradient is lost, 5% H+ pump gives a steadily amplifying advantage

to lowering membrane permeability (Figure 6A). Much the same

applies to pumping Na+ (Figure 6B). The lower permeability of

Na+ gives an initial benefit to pumping this ion, but this is lost as

the membrane becomes tighter, even with 5% pump (Figure 6B).

This lower efficacy is due to the much higher external

concentration of Na+.

With active pumping, tighter membranes, and SPAP, cells could

colonize more acidic regions (Figure S5), regions with weaker

gradients (Figure 6C), and ultimately survive in the absence of a

gradient altogether (Figure 6D). With no external pH gradient,

SPAP interconverts efficiently between H+ and Na+, making it

feasible to pump either ion (Figure 6D). These cells are now

modern in that they have a fully functional chemiosmotic circuit

and proton-tight membranes, and hence could evolve the traits

required to leave the natural gradients for the external world. We

propose that this process occurred independently in divergent

populations that had spread widely using SPAP to colonize regions

with weak gradients (see Discussion). These independent popula-

tions subsequently evolved into the two main branches of early life,

the archaea and bacteria [1].

Discussion

Our model suggests a resolution to the long-standing paradox

that membrane bioenergetics are universal, but membranes are

fundamentally different [19]. In so doing, the model gives a

striking insight into the deep evolutionary split between archaea

and bacteria. It reveals that the late and divergent evolution of

impermeable membranes could have arisen as a simple outcome

of LUCA’s exploitation of natural proton gradients. Our model

applies in principle to any environment in which sharp

differences in proton concentration are sustained over short

distances, one concrete example being alkaline hydrothermal

vents [18,24,31–33]. Given the membrane proteins Ech and

ATPase, we show that natural proton gradients could have

sustained both carbon and energy metabolism in LUCA

(Figure 3C and 3D). However, to do so, LUCA had to have

very leaky membranes, the only way to avoid deadly electro-

chemical equilibrium (Figure 3A).

Our results indicate that LUCA did not have modern

phospholipids. The addition of glycerol-phosphate headgroups is

specifically precluded by the requirement for high proton-

permeability in natural gradients (Figure 3A). Addition of a

glycerol-phosphate headgroup reduces proton permeability sub-

stantially, as the polar headgroup cannot cross the hydrophobic

interior of the membrane [40]. In contrast, lipid membranes

composed of mixed amphiphiles, including fatty acids, have much

greater proton permeability, through ‘‘flip-flop.’’ In flip-flop,

protonation of a negatively charged fatty acid eliminates its charge,

allowing the neutral residue to migrate across the hydrophobic

membrane to the inside [41]. Deprotonation on the relatively

alkaline interior rapidly dissipates proton gradients, explaining the

high proton permeability of fatty acid vesicles [41]. Flip-flop is not

possible with Na+, which remains ionic in the presence of a

negatively charged amphiphile, hence its lower permeability [34].

Our results indicate that LUCA was sophisticated in terms of

genes and proteins, but did not have a modern phospholipid

membrane. However, LUCA must have had a stable lipid bilayer

membrane composed of mixed amphiphiles, probably including

fatty acids and isoprenes (some of which are found in both archaea

and bacteria [15]). A lipid bilayer membrane is undoubtedly

necessary for the function of membrane proteins such as the

ATPase and Ech [42].

The actual permeability of membranes is difficult to determine

experimentally, as H+ permeability depends in part on the

permeability of counter-ions, and therefore varies with the

composition of solutions used in measurements. Values of

phospholipid membrane H+ permeability range from 1024 cm/s

[43] to 10210 cm/s [44,45], with a consensus favoring a value of

between 1024 to 1026 cm/s [34]. The H+ permeability of fatty

Figure 5. SPAP significantly increases free energy. (A) Because external Na+ concentration (0.4 M) is higher than H+ concentration (1027 M),
SPAP initially collapses 2DG, and it takes minutes for the 1:1 H+:Na+ exchange to increase 2DG; eventually it renders an increase of ,60%. (B) The
greatest increases are attained in relatively alkaline pH 7:10 environments, saturating as % surface area rises. Despite equivalent gradient sizes, the
absolute difference in H+ and OH2 concentrations means a 6:9 gradient gives a lower 2DG, as the rate of H+ influx is greater while neutralizing OH2

influx is lower. A 5:8 gradient undermines 2DG further, with or without SPAP. (C) SPAP facilitates colonization of environments with weaker proton
gradients. 1% SPAP pushes 2DG above 20 kJ/mol in a 7.5:10 gradient, whereas 10% SPAP salvages an otherwise unviable 8:10 gradient. All
simulations with 1% promiscuous ATPase, no pump, no Ech, and H+ permeability 1023 cm/s.
doi:10.1371/journal.pbio.1001926.g005
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acid vesicles is higher, in the range of 1022 to 1023 cm/s or even

greater [41]. These values are for standard temperature, 25uC
(298 K). Both H+ and Na+ permeability rise substantially with

temperature, by approximately 1 order of magnitude for every

20uC increase between 20uC and 100uC, although the actual

values depend on membrane composition [45]. The membrane

permeability also depends on the kinetics of membrane proteins,

which likewise vary with temperature. We have used standard

temperature for enzyme kinetics. How these values would vary

with temperature is difficult to estimate, as the kinetics of enzymes

adapted to low temperatures would differ from those in

thermophiles if placed in the same membrane at the same

temperature. However, our simulations of efficiency and stoichi-

ometry (Figures S1 and S2) suggest that the effect should be

substantially less than that of lipid permeability. We are therefore

confident that our results apply generally, despite these uncertain-

ties. We stress that our argument relates to the principle of energy

transduction in natural proton gradients, not to the specific values

used for membrane permeability. The key point is that leaky

membranes were essential to transduce natural proton gradients,

and there was no advantage to be gained by the evolution of

proton-tight phospholipid membranes, whether at low or high

temperatures.

This leads to a paradox. Pumping either H+ or Na+ over leaky

membranes gives no sustained advantage when membrane

permeability is lowered over 1,000-fold (Figure 4A and 4B). That

precludes the evolution of either active ion pumps or modern

proton-tight membranes in a LUCA dependent on natural proton

gradients. We hypothesize that the evolution of a SPAP was the

key innovation that favored the independent evolution of active

ion pumps and phospholipid membranes in bacteria and archaea.

SPAP has two major effects that made this possible.

First, SPAP favors divergence, through adding a Na+ gradient to

the geochemically sustained H+ gradient. Because lipid mem-

branes are much less permeable to Na+ ions, these preferentially

flow back through membrane proteins, thereby increasing free-

energy availability by up to 60% (Figure 5A). For this additional

Na+ gradient to be useful, membrane proteins must be promis-

cuous for Na+ and H+, which is the case for some primitive

ATPase enzymes [38] and for Ech [26]. While the ATPase

generally specializes either for H+ or Na+ today, only a few amino

acid changes are required to switch from one form to the other

[46]. Phylogenetic trees of the ATPase suggest that the H+-

dependent and Na+-dependent forms are interleaved, implying

greater promiscuity in early evolution [24]. The reason probably

relates to the close similarity in ionic radius and charge of Na+

Figure 6. SPAP gives a sustained benefit to pumping favoring tighter membranes and allowing free living. (A) The combination of
SPAP with 5% H+ pump gives a sustained increase in 2DG as membrane permeability decreases, for the first time favoring the evolution of modern
proton-tight phospholipid membranes. In contrast, 1% H+ pump gives an initial benefit, but provides insufficient power to sustain 2DG as the
gradient is lost with decreasing permeability. (B) The combination of SPAP with both 1% and 5% Na+ pump provides an initial benefit, but neither
provides enough power to sustain 2DG with decreasing permeability. (C) SPAP facilitates colonization of smaller gradients, ultimately making it
possible to survive, after the evolution of tight membranes, in the total absence of a gradient (D); cells could not survive without a gradient unless
relatively proton-tight membranes were already in place, as 2DG falls well below the 15–20 kJ/mol threshold upon losing the gradient with a leaky
membrane. All simulations assume 1% SPAP. Legend in (B) is common to all panels.
doi:10.1371/journal.pbio.1001926.g006
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without its hydration shell (the form in which it usually passes

through membrane proteins) and the hydronium ion, H3O+ (the

form in which H+ is most commonly found in solution). Thus it is

likely that addition of a Na+ gradient to a natural H+ gradient by

SPAP would indeed increase the free energy available to the cell as

a usable electrochemical difference. This enabled cells to survive

in 50-fold lower gradients (Figure 5C), or with intermittent

gradients and mixing (Figures S3 and S4), facilitating spread and

divergence.

Second, SPAP gives a continuous selective advantage to actively

pumping protons even across a leaky membrane (Figure 6A). This

advantage amplifies steadily as membrane permeability decreases,

all the way towards values for largely impermeable modern

membranes (Figure 6A). Our results lead us to suggest that the

SPAP is ancestral and must have been present in LUCA.

Phylogenetic analysis is consistent with this prediction. BLAST

[47] results show a match for archaeon Methanocaldococcus
jannaschii’s Mj1275 SPAP to an equivalent or very closely related

protein in at least one member of 35 out of all 37 prokaryotic

phyla reported to date (Table S2). The two bacterial clades with a

missing match are to date single-member phyla whose only known

species may have either lost the gene over time, had it diverge

beyond observable similarity to the M. jannaschii ortholog, or

simply have not been fully annotated in the databases yet. This

confirms our prediction of the universality of SPAP in spite of the

stark dissimilarity in membranes, and paves the way for closer

phylogenetic analysis of these antiporters and related proteins.

We note that the early operation of SPAP would have the effect

of lowering the intracellular Na+ concentration substantially below

ambient seawater concentration, explaining how cells that evolved

in the ocean could nonetheless be optimized to low intracellular

Na+ and high K+ concentration. The operation of antiporters (and

possibly symporters), driven by natural proton gradients, could in

principle have modulated intracellular ionic composition to the

low-Na+–high-K+ characteristic of most modern cells, leading to

selective optimization of protein function without the need for a

specific terrestrial environment with a particular ionic balance

[27]. These considerations are also consistent with the universality

of SPAP across prokaryotic phyla.

Our analysis demonstrates that active ion pumps almost

certainly arose after SPAP, and only then did selection favor the

evolution of ion-tight membranes with glycerol phosphate head-

groups. Given that SPAP in itself facilitated the spread and

colonization of regions with shallower (Figure 5C) or more

intermittent gradients (Figures S3 and S4), pumping is expected

to arise independently in more than one population, as observed

[13,19]. Only when active ion pumping had evolved was there any

benefit to incorporating glycerol-phosphate headgroups, thereby

reducing membrane permeability (Figure 6A). Phospholipid bio-

synthesis involves nucleophilic attack on the prochiral carbonyl

center of dihydroxyacetone phosphate [10]. This can be achieved

from either side of the molecule, giving rise to opposite

stereochemistries of the central carbon in glycerol phosphate

(Figure 1). The enzymes involved, G1PDH in archaea and

G3PDH in bacteria appear to have taken these alternatives by

chance in independent populations that had already evolved

distinct ion pumps. Thus we posit that the ancestors of archaea

and bacteria evolved both ion pumps and phospholipid mem-

branes independently, the latter on the basis of a simple binary

choice in the orientation of nucleophilic attack on dihydroxyac-

etone phosphate.

We conclude that the membranes of LUCA were necessarily

leaky, composed of mixed amphiphiles (including fatty acids) but

lacking glycerol-phosphate headgroups. Fatty-acid vesicles have

long been considered plausible protocells because of their

simplicity, stability, and dynamic ability to grow [48–50], but

are generally thought unsuitable for chemiosmotic coupling due to

their high proton permeability [27,51]. Leaky membranes have

therefore generally been interpreted in terms of heterotrophic

origins of life [52]. In contrast, we find that high proton

permeability was in fact indispensable to drive both carbon and

energy metabolism in natural proton gradients, consistent with

autotrophic origins; and this requirement for leaky membranes in

turn precluded the early evolution of phospholipid membranes

(Figure 7). Our model offers a selective basis for the universality of

membrane bioenergetics and the ATPase, while elucidating the

paradoxical differences in membranes and active ion pumps. The

deep disparity between archaea and bacteria in carbon and energy

metabolism [19,53], and in membrane lipid stereochemistry [10],

reflects two independent origins of active pumping in divergent

populations (Figure 7).

The conclusion that LUCA had leaky membranes, and that

modern phospholipid membranes evolved later and independently

in archaea and bacteria, provides a framework for interpreting

other dichotomies between archaea and bacteria. The late and

independent evolution of glycolysis but not gluconeogenesis [12] is

entirely consistent with LUCA being powered by natural proton

gradients across leaky membranes. Several discordant traits are

likely to be linked to the late evolution of cell membranes, notably

the cell wall, whose synthesis depends on the membrane [11] and

DNA replication [14]. In the latter case, the fingers-thumb-palm

motif at the active site of DNA polymerase enzymes [54] and the

structure of the replication fork [55] are superficially similar in

archaea and bacteria, yet most proteins involved in DNA

replication, including the principal replicative polymerases, bear

no phylogenetic resemblance [14,56,57]. That implies either

independent origins [14] or inscrutably deep divergence compared

with the plainly homologous transcription and translation

machinery [56,57]. Because the bacterial replicon is attached to

the plasma membrane during cell division [58–60], this complex

presumably arose after (or coevolved with) the bacterial mem-

brane, which must have driven a deep phylogenetic disparity, even

if DNA replication had arisen in LUCA. Thus key facets of the

fundamental split between archaea and bacteria could be linked to

the late origin of phospholipid membranes, for these bioenergetic

reasons. While it is difficult to prove that these bioenergetic factors

really did account for the deepest branch in the tree of life, they do

offer a robust and testable framework that can explain the

paradoxical character of LUCA and the stark differences between

archaea and bacteria.

Materials and Methods

General Description of the Model
Cells were modeled half embedded in the alkaline fluid, with the

other half exposed to the comparatively acidic fluid. This

produced an inward proton gradient from the acidic side,

sustained by the constant neutralization with OH2 from the

alkaline side (Figure 2). Only the two external pH values are fixed;

the internal pH is then arrived at in response to the fluxes of H+

and OH2 across the membrane, which in turn depends on

permeability, the respective concentrations of each ion, and flow

through the membrane proteins. Equation 1 describes the various

ways in which protons could enter or leave the cell at every time

step: by simple diffusion across the membrane on either side, and

through any of the membrane proteins, namely the ATPase,

SPAP, pump, or Ech.
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NH(in)~NH(acid)zNH(alkaline)

zNH(ATPase)zNH(SPAP)zNH(pump)zNH(Ech)

ð1Þ

Total concentrations of H+ and OH2 were calculated at every

time step by neutralization and equilibration to the dissociation

constant of water. External fluids were assumed to be part of

comparatively large bodies of water, with their acidity and

alkalinity sustained by large-scale geological or meteorological

processes; thus their concentrations of H+, OH2, and other ions

were assumed constant. Analogous equations were used for other

ions.

Table S1 describes the parameters chosen for the results

presented in the text, unless otherwise stated.

We anticipate that enzymes could not have reached their

current reaction rate values at the early stages of evolution that we

are considering, so for the results presented in the main text we

have consistently used 10% of the current turnover rates

referenced in Table S1. A series of results using modern (100%)

turnover rates are presented in Figure S1 for comparison.

Flux through the Membrane
Membrane flux JS of a neutral substance S was modeled using a

traditional passive diffusion equation [61]

JS~PSA(½S�ext{½S�int) ð2Þ

where PS is the permeability of the substance, A is the area of the

membrane, and [S]ext and [S]int are the external and internal

concentrations respectively. To account for the effect of mem-

brane potential Dy on the behavior of charged particles, ion

diffusion was modeled using the Goldman-Hodgkin-Katz flux

equation [39,62]

JS~PSz2
s

DyF

RT

½S�int{½S�exte
{

zSDyF

RT

1{e{
zSDyF

RT

ð3Þ

where zs is the charge of the substance, F and R are the Faraday

and gas constants, respectively, and T is the temperature.

Electrical membrane potential Dy was in turn modeled using

Figure 7. Divergence of archaea and bacteria. (A) Ions cross the membrane in response to concentration gradients and electrical potential. OH2

neutralizes incoming protons. The H+ gradient can drive energy metabolism via ATPase, and carbon metabolism via Ech (not shown). (B) SPAP
generates a Na+ gradient from the H+ gradient. As Na+ is less permeable than H+, SPAP improves coupling, given promiscuity of membrane proteins
for H+ and Na+. (C) Membrane pumps generate gradients by extruding H+ or Na+ ions. (D) Exploiting natural gradients demands high membrane
permeability, but pumping with SPAP drives the evolution of tighter membranes, facilitating colonization of less alkaline environments. (E)
Impermeable membranes funnel ion flow through bioenergetic proteins, independent of natural gradients. (F) From bottom up, SPAP favors
divergence, selection for active pumping and tighter membranes. Pumping and phospholipid membranes arose independently in archaea and
bacteria.
doi:10.1371/journal.pbio.1001926.g007
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the Goldman-Hodgkin-Katz voltage equation [39,62]

Dy~
RT

F
ln

P
½cation�extz

P
½anion�intP

½cation�intz
P
½anion�ext

� �
ð4Þ

for the concentration of each cation and anion present.

Internal protons and hydroxide were equilibrated using the

dissociation constant of water.

Free Energy (DG) Calculations
The available free energy DG from the H+ gradient was

modeled with the traditional equation used by Mitchell [20]

DGHz~{FDyzRT ln
½Hz�int

½Hz�ext

� �
ð5Þ

An analogous equation was used for the Na+ gradient.

The power of ATP to catalyze biochemical reactions in the cell

comes not specifically from hydrolysis of the molecule itself but

from the degree to which the ATP/ADP ratio is shifted from

thermodynamic equilibrium; that is, the energy available from

ATP hydrolysis varies with the ATP/ADP ratio [30]. The

equilibrium constant and thus the energy required for ATP

synthesis depends on the concentrations of ADP, phosphate, and

magnesium ion, as well as pH [20,30], but with the exception of

pH these values are unknown for the systems modeled, as are rates

of ATP hydrolysis. We have therefore used Equation 5 to calculate

the size of the electrochemical gradient (DG) as a function of the

H+ and Na+ gradients and the electrical membrane potential (Dy).

The steady-state DG in turn gives an indication of how far from

equilibrium the ATP/ADP ratio could be pushed. With 3–4

protons translocated per ATP, a steady-state DG of 220 kJ/mol is

large enough to drive the ATP/ADP ratio to a disequilibrium of

10 orders of magnitude, equivalent to that found in modern cells

[30].

We calculated steady-state DG as a function of the size of the H+

and Na+ gradients and the electrical membrane potential (Dy)

between the acid fluid and the inside of the cell. These factors in

turn depend on steady-state rates of proton flux into and out of the

cell via the lipid phase of the membrane (specified by its H+ and

Na+ permeability and surface area) and through the ATPase. We

calculated the maximum flux of H+ or Na+ flux through the

ATPase on the basis of the maximum possible number of ions

translocated per second. Maximum ion flux is based on the

reported maximum turnover rate of ATPase (Table S1), i.e., the

maximum number of ATP molecules that each ATPase unit can

synthesize in one second when operating at top speed, multiplied

by 3.3, the number of H+ or Na+ required to synthesize 1 ATP

(Table S1). This number was then multiplied by the number of

ATPase units in the system, estimated from the membrane surface

area assigned to this protein in each simulation (e.g., 1%, 5%, etc.)

and the reported surface area of the membrane-integral FO

subunit (Table S1).

We further assumed that the actual flux rate of H+ and Na+

through the ATPase would also depend on the driving force itself,

DG, i.e., the size of the H+/Na+ gradient and the electrical

membrane potential (Dy). We assumed that the ATPase obeys

hyperbolic Michaelis-Menten dynamics, commonly the case in

enzyme kinetics [63] and reported for the ATPase [64], such that

H+/Na+ flux asymptotically approaches the maximum turnover

rate when the driving force is large, again assuming that flux rate is

unconstrained by ADP availability. Thus, increasing DG beyond a

threshold cannot increase H+/Na+ flux beyond the maximum

turnover rate, so flux rate must saturate. The hyperbolic curve was

modeled to reach saturation slightly beyond 220 kJ/mol, a

gradient large enough to drive the ATP/ADP ratio to 10 orders of

magnitude disequilibrium in modern cells [30] and equivalent to a

membrane potential of around 200 mV, close to a maximum for

modern lipid membranes, given the low capacitance of thin lipid

membranes. This number, between zero and one, was finally

multiplied by the maximum flux of H+ or Na+, described above, to

determine the influx of each of the two ions through the ATPase.

When added to H+/Na+ flux rates across the lipid phase, the

steady-state H+/Na+ flux through the ATPase gave a steady-state

DG available to drive ATP synthesis.

Full promiscuity of the ATPase to Na+ and H+ was assumed,

with preference of one ion over the other depending solely on their

respective gradient sizes. The Ech was modeled analogously.

Modeling the Sodium-Proton Antiporter and Pump
SPAP was modeled to respond to the H+ and Na+ gradients,

exchanging ions in the direction determined by the larger of the

two gradients. Dy was assumed to affect SPAP speed but not

direction [65]. Since the H+ gradient is reversed on the alkaline

side, we assumed the SPAP, ATPase, and Ech operated only on

the acidic side.

The pump was modeled as a generic system able to extrude

either H+ or Na+, dependent on the concentration of hydrogen gas

(H2), and responding to the opposing gradient, thus making it

easier to pump protons against an alkaline fluid, and more difficult

against an acidic fluid.

Source Code
A running example of the code can be found at http://www.ucl.

ac.uk/,rmhknjl/research/membranedivergence

This code can be run directly from any typical computer with an

Internet connection. Additionally, it can be downloaded and run

locally (at no significant increase in speed) from http://github.com/

UCL/membranedivergence

BLAST Searches
The primary amino acid sequence of the M. jannaschii Mj1275

Na+/H+ antiporter (SPAP) was obtained from the NCBI protein

sequence database. Mj1275 is one of three known SPAP genes in

archaeon M. jannaschii, the other two being Mj0057 and Mj1521

[66]. The first belongs to the NapA family, while the latter two are

in the NhaP family. Phylogenetic analysis was performed on these

three genes as well as the two common Escherichia coli SPAP

genes, NhaA and NhaB [67,68], using the NCBI-BLASTp server

[47] with standard parameters, filtering for each prokaryotic

phylum (considering each of the proteobacteria as a separate

clade). Results for Mj1275 showed the highest hit rate (Table S2),

possibly hinting that it is closest to the ancestral form of the SPAP.

Results for the other genes are not shown.

Supporting Information

Figure S1 Comparison of different enzyme turnover
rates. We assume that membrane proteins in LUCA had lower

turnover rates than those in modern archaea and bacteria. For all

the results in the main text, turnover rates were modeled at 10% of

modern values (see Table S1 for these values). The figure shows

that with ATPase, SPAP, and pump, the behavior is similar when

turnover is set at 10%, 50%, and 100% for each protein.

Parameters: 5% pump, 1% ATPase, 1% SPAP, pH gradient 7:10.

(TIF)
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Figure S2 Effect of higher H+-to-ATP stoichiometry in
the ATPase. Lowering the efficiency of the ATPase by increasing

the number of H+ necessary to synthesize one ATP molecule has a

minor effect on the simulation results. Almost halving efficiency to

6 H+ per ATP lowers 2DG by less than 1%.

(TIF)

Figure S3 Effect of fluctuations in external acidic pH,
while holding external alkaline pH constant at pH 10.
We considered the effect of mixing, with alkaline fluids causing

local fluctuations in the pH of the acidic side. These were taken to

occur on a scale of seconds, causing meaningful perturbations to

the pH gradient and 2DG. (A) Increases in the pH of the acidic

side shrink the exploitable gradient. (B) With 1% ATPase and no

SPAP or pump in the membrane, pH fluctuations are followed

swiftly by corresponding changes in 2DG. Circles on the y axis

show the 2DG values at stasis at pHacidic 7. Histograms in (C)

show the frequency distributions for the corresponding curves in

(B), with the vertical lines denoting the values for stasis at pH 7

(solid black) and mean of the corresponding curve (dashed grey).

(D) Although responses are somewhat slower, addition of 5%

SPAP makes fluctuations more survivable by increasing power

overall. (E) is analogous to (C). See Figure S4 for similar

fluctuations in the alkaline side.

(TIF)

Figure S4 Effect of fluctuations in external alkaline pH,
while holding external acidic pH constant at pH 7.
Qualitatively similar behavior to that of Figure S3 was observed

when fluctuations occur on the alkaline side.

(TIF)

Figure S5 Pumping in the presence of SPAP facilitates
adaptation to more acidic regions. All three curves show a

steady increase in 2DG with 5% pump in equivalent pH gradients

(each of 3 pH units) with decreasing membrane permeability. In

relatively alkaline conditions (pH 7:10 and 6:9) the benefit of

pumping increases with decreasing permeability, but is relatively

modest. In more acidic environments (pH 5:8) there is initially a

relatively greater payback to pumping as membrane permeability

decreases. The reason is that at high membrane permeability

(1022 cm/s) and relatively acidic pH (5:8), there is a fast influx of

H+ (from the acidic side) and a slow influx of OH2 (from the

alkaline side), leading to the collapse of 2DG. Pumping across a

very leaky membrane gives little benefit even with SPAP (2DG is

very low). Lowering membrane permeability limits H+ influx and

enhances the benefits of pumping, giving a greater relative benefit

in acidic conditions (pH 5:8). In contrast, with tight membranes

(1026 cm/s), cells are powered almost exclusively by their own

pumps, with little contribution from the external gradient (2DG

collapses in the absence of a pump; see Figure 3A and 3B). Cells in

relatively alkaline (6:9 and 7:10) environments now gain slightly

more from pumping. The reason is that the opposing external H+

concentration is greater at pH 5:8, so pumping H+ out is harder

than at pH 6:9 or 7:10. The figure thus shows a transition from a

highly permeable gradient-powered system on the left to a low

permeability pump-powered system on the right.

(TIF)

Table S1 Parameters in the model and references.

(DOC)

Table S2 BLAST-search results for matches of the
archaeal M. jannaschii Mj1275 SPAP to at least one
member of each of the 37 known prokaryotic phyla.

(DOC)
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15. Lombard J, López-Garcı́a P, Moreira D (2012) The early evolution of lipid

membranes and the three domains of life. Nat Rev Microbiol 10: 507–515.

16. Valentine D (2007) Adaptations to energy stress dictate the ecology and

evolution of the Archaea. Nat Rev Microbiol 5: 1070–1077.
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